
Whiteout: Gaussian Adaptive Regularization Noise
in Deep Neural Networks

Yinan Li1∗, Ruoyi Xu2∗, and Fang Liu1†

1 Department of Applied and Computational Mathematics and Statistics

University of Notre Dame, Notre Dame, IN 46556, U.S.A.
2 School of Computer Science and Technology,

University of Science and Technology of China, Hefei, 230027, P.R.China

Dec 3, 2016

Abstract

Noise injection is an off-the-shelf method to mitigate over-fitting in neural net-
works (NNs). The recent developments in Bernoulli noise injection as implemented
in the dropout and shakeout procedures demonstrates the efficiency and feasibility
of noise injection in regularizing deep NNs. We propose whiteout, a new regulariza-
tion technique via injection of adaptive Gaussian noises into a deep NN. Whiteout
offers three tuning parameters, offering flexibility during training of NNs. We show
that whiteout is associated with a deterministic optimization objective function in
the context of generalized linear models with a closed-form penalty term and includes
lasso, ridge regression, adaptive lasso, and elastic net as special cases. We also demon-
strate that whiteout can be viewed as robust learning of NN model in the presence
of small and insignificant perturbations in input and hidden nodes. Compared to
dropout, whiteout has better performance when training data of relatively small sizes
with the sparsity introduced through the l1 regularization. Compared to shakeout,
the penalized objective function in whiteout has better convergence behaviors and
has a tighter bound for tail probabilities. We establish theoretically that the noise-
perturbed empirical loss function with whiteout converges almost surely to the ideal
loss function, and the estimates of NN parameters obtained from minimizing the for-
mer loss function are consistent with those obtained from minimizing the ideal loss
function. Computationally, whiteout can be incorporated in the back-propagation
algorithm and is computationally efficient. The superiority of whiteout over dropout
and shakeout in training NNs in classification is demonstrated using the MNIST data.

keywords: (adaptive) lasso; elastic net; regularization; robustness; consistency;
backpropagation

∗Co-first authors
†Corresponding author email: fang.liu.131@nd.ed

1

ar
X

iv
:1

61
2.

01
49

0v
1

 [
st

at
.M

L
]

 5
 D

ec
 2

01
6

1 Introduction

An artificial neural network (NN) is a simplified computational model of how the neurons
in our brains operate to solve certain kinds of problems (Mcculloch and Pitts, 1943). A NN
comprises of an input layer, an output layer, and one or more hidden layers in between with
nonlinear processing units for feature extraction and transformation. When there are more
than one hidden layer in a NN, the NN is often referred to as a deep NN. Deep learning is
often regarded as a re-branding of NNs with a class of machine learning algorithms (Hinton
and Salakhutdinov, 2006). In the deep learning of a NN, each successive layer uses the
output from the previous layer as input, representing a higher level set features derived
from the lower-level features in the previous layer, and thus formulating a hierarchical
structure of feature extraction. The work by Hinton and Salakhutdinov (2006) marked a
reactivation in the research and applications of deep learning of NN, which has seen many
successful applications in pattern recognition and classification such as image an speech
recognition, natural language processing, drug discovery and toxicology, among others.

Deep NNs are prone to overfitting given the high-dimensionality of the parameters in-
volved in the multiplicity of layers and the often large number of nodes. Regularization
methods such as early stopping, max-norm, Ivakhnenko’s unit pruning Ivakhnenko (1971),
l2-regularization (weight decay) and l1-regularization (sparsity) can be used to impose
smoothness constraints on the learned NN model to help combat overfitting. A recent
regularization method is dropout (Hinton et al., 2012; Srivastava et al., 2014), where some
number of units are randomly dropped from the hidden layers (with recommended pro-
portion 0.5) and the input layer (with recommended proportion 0.2) during the training
period of a deep NN. The dropout regularization can be viewed a stochastic version of
model averaging and prevents the nodes from co-adapting too much. As such, dropout can
significantly reduce the generalization errors in a trained deep NN. From an implementa-
tion perspective, dropout is noise injection (NI), by adding Bernoulli noise to hidden and
inputs units in a NN (Wager et al., 2013; Wang and Manning, 2013a; Srivastava et al.,
2014). In the simple case of linear regression models E(y) = Xw, dropping a predic-
tor xj from the model dropped out with a probability 1− p is equivalent, to the following
Tikhonov regularization in expectation: minimization of ||y−pXw||2+p(1−p)||Γw, where
Γ = (diag(XtX))1/2. In general, NI helps to improve the generalization ability of a trained
NN, especially in fully connected NN layers (Zhuo et al., 2015; Grandvalet, 2000; An, 1996),
, and has been shown to be related to kernel smoothing (Holmstrom and Koistinen, 1992)
and heat equation (Grandvalet, 2000).

Due to the optimistic performance of dropout, various algorithmic and computational
extensions and improvements have been proposed. The maxout technique is designed
to facilitate optimization by dropout and improve the accuracy of dropout with a new
activation function (Goodfellow et al., 2013). Fast dropout speeds up the dropout algorithm
by sampling from or integrating a Gaussian approximation instead of randomly dropping
nodes (Wang and Manning, 2013b). DropConnect sets a random subset of weights in a NN
to zero (Wan et al., 2013). Standout or adaptive dropout selectively (rather than randomly)
sets nodes to zero and chooses to enhance or inverse the contributions of a node to the next
layer (Ba and Frey, 2013). In all these regularization techniques (dropout, DropConnect,

2

standout, shakeout), noises being injected to a deep NN are Bernoulli noises. Shakeout
also leads to a sparse model and has better performance when the training data set is not
large in size given that the Bernoulli noises in shakeout are designed to allow both l1 and
l2 regularization (elastic-net type of regularization) on the weights of a NN.

On the other hand, there is still room to improve on the current available set of regular-
ization techniques through Bernoulli NI. First, the final NN trained with Bernoulli NI is
an average of a finite number of sub-models that may not exhibit concentration patterns
in sub-models in large p-small n settings. Therefore, the “average” final trained NN can
be biased. Second, in shakeout, updates of weights through the backpropagation (BP)
algorithm includes derivative of the sign function which can only be approximated at best.
Third, due to the restriction of Bernoulli’s noise (two possible noise values), dropout cor-
responds to the l2 regularization and the elastic-net-type regularization is the only form
of extension from the l2 regularization in shakeout. Srivastava et al. (2014) hinted that
Gaussian noise works just as well as, or perhaps better than, Bernoulli noise.

In this paper, we propose whiteout, a Gaussian adaptive regularization NI technique, to
regularize learning of deep NNs. whiteout is named so because it is a NI technique as
dropout, and the injected Gaussian noise is a “white” noise. whiteout perturbs the input
and hidden nodes in a deep NN with Gaussian noise, the variance of which adapts to the
weights during the iterations of a deep learning algorithm. whiteout has a corresponding
deterministic optimization objective function with a closed-from penalty term that includes
lasso, ridge regression, elastic net, adaptive lasso, and adaptive elastic net as special cases.
The involvement of the l1 penalty enable whiteout to train a NN model in data sets of
relatively small sizes. whiteout offers 3 tuning parameters, and is more flexible in terms of
training than the above mentioned Bernoullis NI injection. In addition to being reviewed as
regularization technique to combat overfitting, whiteout can also be regarded as a technique
to improve robustness of the learned model to small and insignificant perturbations in data.
We also show that the empirical loss function with whiteout is consistent for the ideal loss
function and has a tighter bound, and empirically has a higher convergence rate than those
of Bernoulli noise based methods. Computationally, whiteout can be easily incorporated
in the back-propagation procedure and is computationally efficient.

The rest of the paper is organized as follows. The concept of whiteout is introduced in
Section 2. The connection between whiteout and regularization is established in Section
2.1. whiteout as a way to improve the robustness of a trained NN is presented in Section
2.2. We define multiple types of loss function in NNs in Section 2.3, and prove that the
noise-perturbed empirical loss function with whiteout converges almost surely to the ideal
loss function. Section 2.4 presents the step-by-step whiteout-augmented BP algorithm and
proposes a weights updating algorithm without having to approximate the derivative of
the sign function (an improvement over the shakeout algorithm). The whiteout technique
is applied to the classification problem in the MNIST data, and compared to the regular
BP algorithm, dropout and shakeout in Section 3. Concluding remarks are presented in
Section 4. Most of the technical proofs are provided in the Appendix.

3

2 Whiteout

Whiteout adds independent noises drawn from the Gaussian distribution in Eqn (1) to
each node i = 1, . . . , p(l) in layer l of a NN in each case of the training data in an epoch
cycle of the deep learning algorithm,

X̃
(l)
i = X

(l)
i + ei =

X
(l)
i1
...

X
(l)

ip(l)

+

 ei1
...

eip(l)

 , where eij
iid∼ N

(
0,

σ2

|w(l+1)
ij |γ

+ λ

)
, (1)

where j is a node in layer l+1, w(l+1)
ij is the weight between nodes i and j, σ2 > 0, λ ≥ 0, and

γ ∈ [0, 2] are tuning parameters. In the practical implementation of whiteout, all three
tuning parameters can be user-specified or chosen by cross validation (CV). Intuitively,
σ should be inversely proportional to n; that is, given the same NN model, overfitting
is less a serious problem with a large n thus less regularization is required. Whiteout
can be regarded as a process of generating noisy versions of the training data set, and
the auxiliary noise is then averaged out in the final trained NN (Seghouane et al., 2004).
Some convenient choices and special cases of whiteout noise are Gaussian lasso noise (gala),
Gaussian adaptive lasso noise (gaala), Gaussian ridge noise (gar), Gaussian elastic-net noise
(gen), and Gaussian group noise (gag) presented in Definition 1 (for notation simplicity,
wij is used in place of w(l+1)

ij).

Definition 1. In whiteout,

a) gala draws Gaussian noise from eij ∼ N
(

0, σ2

|wij |

)
b) gaala draws noises from eij ∼ N

(
0, σ2

|wij |γ

)
, 1 < γ < 2

c) gar draws Gaussian noise from eij ∼ N
(

0, σ2

|wij |2

)
.

d) gala, gaala and gar noises are collectively referred to as gallr noise, covering the
scenarios when γ ∈ [1, 2] and λ = 0.

e) gen draws noises from eij ∼ N
(

0, σ2

|wij | + λ
)
, λ > 0

f) gag penalizes a group of input variables (X1, · · · , Xg) ∈ G (e.g.,indicator variables
generated from the same categorical attribute) rather than singly, by drawing noises

from eij ∼ N

(
0, σ2C

√∑g
k=1w

2
ik

w2
ij

)
, j = 1, · · · , g, whereas eij ∼ N

(
0, σ2

|wij |

)
for Xj /∈

G, where C is the scale constant concerning the group structure.

Noise eij can be injected to the nodes in both the input and the hidden layers in gallr and
gen, whereas gag makes the most sense in perturbing the nodes in the input layer, since
grouping of hidden nodes, which are abstract extracted features that do not necessarily
have any physical meanings, are hard to justify.

4

Remark 1. Whiteout with gen noise is equivalent to adding the sum of gala noise and the
regular Gaussian noise with a constant variance σ2. Therefore, all theoretical properties
established in the framework gallr noise (Sections 2.1, 2.2, 2.3) also hold in case of gen
noise.

Injecting additive Gaussian noise of mean = 0 as given in Eqn (1) is equivalent to injecting

multiplicative Gaussian noise to node h as in hi +hiεij, where εij ∼ N

(
1, σ2

h2i |w
(l+1)
ij |γ

+ λ
h2i

)
.

Remark 2. The minor difference between additive and multiplicative Gaussian NI does
not affect the theoretical properties concerning whiteout (Sections 2.1, 2.2, 2.3) given the
inherent properties of activation functions and the structures of deep NNs.

Without loss of generality, we will establish the theoretical properties of whiteout in the
framework of additive gallr noises, which will be extended to other noises types and to the
multiplicative noise case, given the statements in Remarks 1 and 2.

2.1 Whiteout as a regularization method

A common framework where NI as a regularization technique is established is the the
exponential family, where generalized linear models (GLMs) are based on (Bishop, 1995;
An, 1996; Kang et al., 2016; Wager et al., 2013). In a GLM, the conditional distribution of
output Y given input X ∈ Rp and parameters w is modelled with the exponential family
distribution with parameter w that is often expressed as

Pr(Y |X,w) = h(Y) exp (T (Y)Xw − A(Xw)) ,

where η = Xw is the natural parameter and A(Xw) is the log-partition function. The
corresponding negative log-likelihood function is l(w|X, Y)=− log(Pr(Y |X,w))=−Xw +

A(Xw)T (Y) + C. Given training data (xi, yi) for i = 1, · · · , n, where n is the sample size
of the training data, the maximum likelihood estimator (MLE) ŵ is

ŵ = arg min
w

∑n
i=1 l(w|xi, yi) (2)

Whiteout substitutes the observed xi with its noisy version x̃i as defined in Eqn (1) in∑n
i=1 l(w|xi, yi). That is, the noise perturbed version of the negative log-likelihood function

is
∑n

i=1 l(w|x̃i, yi). Minimization of the expectation
∑n

i=1 l(w|x̃i, yi) over the distribution
of noise e = (e1, . . . , en)t leads to

ŵp = arg min
w

∑n
i=1 Ee(l(w|x̃i, yi)) (3)

Lemma 1. The expected negative log-likelihood function over the distribution of noise e

Ee(lp(w|x̃i, yi)) can be expressed as

Ee(l(w|x̃i, yi)) =
n∑
i=1

l(w|x̃i, yi) +R(w), (4)

5

where R(w) ,
∑n

i=1 Ee(A(x̃iw))− A(xiw) ≈ 1
2

∑n
i=1A

′′(xiw)Var(x̃iw) (5)

The proof of Eqns (4) and (5) in Lemma 1 is given in Appendix A. Eqn (4) suggests that
R(w) is a regularization term that penalizes the minimization of negative log-likelihood
function. In GLMs, A(x̃iw) is a convex and smooth function of w (Wainwright and
Jordan, 2008), and R(w) is always positive by Jensen’s inequality (Wager et al., 2013). The
actual analytical form of R(w) can be readily derived. For example, in linear regression,
Var(x̃iw) = σ2

∑p
j=1 |wj|2−r and A′′(xiw) = 1, thus

R(w) ≈ σ2

n∑
i=1

p∑
j=1

|wj|2−r ,
nσ2

2

∣∣∣∣|w|2−r∣∣∣∣
1
;

in logistic regression, Var(x̃iw) = σ2
∑p

j=1 |wj|2−r and A′′(xiw) = pi(1 − pi), where pi =

Pr(yi = 1|xi) = (1 + exp(−xiw))−1, thus

R(w) ≈ σ2

2

n∑
i=1

pi(1− pi)
p∑
j=1

|wj|2−r ,
σ2

2

n∑
i=1

pi(1− pi)
∣∣∣∣|w|2−r∣∣∣∣

1

Theorem 1. In the framework of GLMs, in expectation,

a). the whiteout procedure with additive gallr noise in Definition 1 is approximately
equivalent to the adaptive lasso penalization (Zou, 2006), with the regularization
term

R(w) ≈ σ2

2
1tΛ(w)1

∣∣∣∣|w|2−r∣∣∣∣
1
, (6)

where Λ(w) = diag(A′′(x1w), · · · , A′′(xnw)), 1 is a column vector of dimension n.

b). the whiteout procedure with gen noise in Definition 1 is approximately equivalent to
the elastic net penalization (Zou and Hastie, 2005), with the regularization term

R(w) ≈ σ2

2
1tΛ(w)1||w||1 +

λ

2
1tΛ(w)1||w||22 (7)

c). the whiteout procedure with gag noise in Definition 1 is approximately equivalent to
the grouped lasso penalization (Yuan and Lin, 2006), with the regularization term

R(w) ≈ σ2

2
1tΛ(w)1 (gC||wjI(Xj ∈ G)||2 + ||wjI(Xj /∈ G))||1) , (8)

where I is an indicator function.

The results presented in Theorem 1 with additive noises can be easily extended to the case
of multiplicative noises.

Corollary 1. In the framework of GLMs, in expectation,

a). the whiteout procedure with multiplicative gallr noise leads to penalty term

R(w) ≈ σ2

2

∣∣∣∣Γ(w)|w|2−r
∣∣∣∣
1
, where Γ(w) = diag(XTΛ(w)X)) (9)

6

b). the whiteout procedure with multiplicative gen noises leads to penalty term

R(w) ≈ σ2

2

∣∣∣∣Γ(w)|w|2
∣∣∣∣
1

+
λ

2

∣∣∣∣Γ(w)|w|
∣∣∣∣
1

(10)

c). the whiteout procedure with multiplicative gag noises leads to penalty term

R(w) ≈ σ2

2

∣∣∣∣CΓ1||wjI(Xj ∈ G)||2
∣∣∣∣
1

+ σ2
∣∣∣∣Γ2|wjI(Xj /∈ G)|

∣∣∣∣
1
, (11)

where Γ1 is the subset of Γ(w) corresponding to Xj ∈ G, Γ2 is the subset of Γ(w)

corresponding to Xj /∈ G.

2.2 Whiteout as a robust learning method

We have shown in Section 2.1 that the whiteout procedure can be regarded as a regular-
ization approach in the maximization of the likelihood function in GLMs. In this section,
we will examine the whiteout procedure from the perspective of stabilizing a learned deep
NN (robustness to noisy small perturbation, and thus generalization of the learned NN).
The mathematical framework, which is established below, can be used to justify NNs of
multiple hidden layers. It is motivated by the work in Matsuoka (1992) who examined
the stability of a shallow NN with noise injection to the input layer only. We explore the
more general case where NI can occur in the input and the hidden layers in deep NNs. For
the purposes of presentation clarity, we demonstrate the framework in NNs with a single
hidden layer and a single binary output node. The proof can be easily extended to a deep
NN with multiple hidden layers and output with multiple outcomes (Remark 3).

Denote the training data by zi = (xi, yi) where xi = (xi1, · · · , xip) and yi ∈ {0, 1} for
i = 1, . . . , n, and the hidden nodes by hij for j = 1, . . . ,m. Inputs xi and hidden node hij
are connected through the activation function f

(1)
j (xi) , f

(1)
j (xiw

(1)
j + b(1)) with weights

w
(1)
j = (w

(1)
j1 , · · · , w

(1)
jp)t and bias b(1). Denote the injected noises via whiteout to xi during

the training of w
(1)
j by e

(1)
ij = (e

(1)
ij1, · · · , e

(1)
ijp)

t. Similarly, the hidden and output layers are
connected through the activation function f (2)(hi) , f (2)(hiw

(2) + b(2)) with bias b(2) and
weights w(2) = (w

(2)
1 , · · · , w(2)

m)t, where hi = (hi1, . . . , him). Denote the noises injected to
hidden node hi during the training of w(2) by e

(2)
i = (e

(2)
1 , · · · , e(2)m)t. Given an input vector

xi, the predicted output from the NN is

ŷi = f (2)(f
(1)
1 (xi), · · · , f (1)

m (xi)|w,b) (12)

where w = {w(1)
1 , · · · ,w(1)

m ,w(2)},b = {b(1), b(2)}. w and b are estimated by minimizing
the empirical loss that measures the distance between the observed and predicted outcomes

l(w,b|x,y) =
∑n

i=1(yi − ŷi)2 =
∑n

i=1

(
yi − f (2)(f

(1)
1 (xi), · · · , f (1)

m (xi)|w,b)
)2

(13)

NI in the input and hidden layers will lead to a change in the predicted output, which is

∆ŷi = f (2)(f
(1)
1 (xi+e

(1)
i)+e

(2)
1 , · · · , f (1)

m (xi+e
(1)
i)+e(2)m)−f (2)(f

(1)
1 (xi), · · · , f (1)

m (xi)), (14)

7

that is approximated, through the first-order Taylor expansion at xi, by

∆ŷi ≈ Ψi · ei =

(
∂f (2)

∂f
(1)
1

∂f
(1)
1

∂xi
, · · · , ∂f

(2)

∂f
(1)
m

∂f
(1)
m

∂xi
,
∂f (2)

∂f
(1)
1

, · · · , ∂f
(2)

∂f
(1)
m

)
· ei, (15)

where ∂f
(1)
j

∂xi
=

(
∂f

(1)
j

∂xi1
, · · · , ∂f

(1)
j

∂xip

)
and ei = (e

(1)
ij1, · · · , e

(1)
ijp, e

(2)
1 , · · · , e(2)m)t.

Definition 2. Sensitivity of a NN model S(w,b) is defined as the ratio between the
variance of ∆ŷi and the variance of the total noise injected per case during the training of
the NN,

S(w,b) =

∑n
i=1 Var(∆ŷi)
Var(1tei)

≈
∑n

i=1 Var (Ψiei)

Var(1tei)
=

∑n
i=1 Ψt

iDΨi

1tD1

where D = diag
(∣∣w(1)

11

∣∣−γ, · · · , ∣∣w(1)
mp

∣∣−γ, ∣∣w(2)
1

∣∣−γ, · · · , ∣∣w(2)
m

∣∣−γ), Ψi is given in Eqn (15)
and 1 is a column vector with m+mp 1’s.

Remark 3. In a deep NN that contains multiple hidden layers and more than one output
nodes, the only modification to Eqns (14) and (15) and Definition 2 is the inclusion of
more partial derivatives terms of those layers’ activation functions and expressing ∆ŷi as
a vector. As such, Theorem 2 holds in the general framework of deep NNs.

Theorem 2. Minimizing the loss function in Eqn (13) in a deep NN coupled with the
whiteout procedure is first-order equivalent to minimizing simultaneously the loss function
with and the sensitivity of the NN model.

l̃(w,b|x,y) = l(w,b|x,y) + λS(w,b) ≈
n∑
i=1

(
(yi − ŷi)2 + λ

ΨtDΨ

1tD1

)
.

The proof of Theorem 2 is given in Appendix B.

2.3 Consistency of the whiteout procedure

As demonstrated in Sections 2.1 and 2.2, whiteout can be regarded as a technique to
mitigate the over-fitting problem and to improve the generalization of a trained NN model
with an additional penalization term. In this section, We establish theoretically that the
noise-perturbed empirical loss function with whiteout converges almost surely to the ideal
loss function, and the estimates of NN parameters obtained from minimizing the former loss
function are consistent with those obtained from minimizing the ideal loss function. We also
investigate the boundary properties of the empirical loss functions with a finite n, which is
important from a practical implementation perspective when whiteout is incorporated in
the BP algorithm.

Denote the true and unknown underlying distribution of (X,Y) by p(X,Y) from which
training data (xi, yi) are sampled. Denote the assumed relation between input x and
output y by f . In the framework of NNs, f(y|x,w,b) is a composition of activation
functions connecting the nodes between layers, with parameters w and b. Per the universal

8

approximation theorem (Hornik, 1991), a feed-forward NN is an universal approximator
for any function under some mild assumptions. We start with defining several types of loss
functions, and assume the NN model f is the same across the loss functions.

Definition 3. .

a). The ideal loss function (ilf) is l(w,b) = Ex,y(f(x)− y)2. l(w,b) is not computable
with unknown p(X,Y) .

b). The empirical loss function (elf) is the realized version of ilf in data (x,y):
l(w,b|x,y) = n−1

∑n
i=1(f(xi)− yi)2.

c). The perturbed empirical loss function (pelf) in data (x,y) is
lp(w,b|x,y, e) = (kn)−1

∑k
j=1

∑n
i=1(f(xi, eij)−yi)2, where k is the number of epochs

in a deep learning algorithm (e.g., BP) and eij represents the collective noises added
to case i (in both input and hidden layers) in the jth epoch during training.

d). The noise-marginalized empirical loss function (nm-pelf) is the expectation of pelf
over the distribution of noise: lp(w,b|x,y) = Ee(lp(w,b|x,y, e)). nm-pelf can be in-
terpreted as training a NN model by minimizing the perturbed empirical loss function
with a finite n but with infinite number of epochs (k →∞).

e). The marginalized perturb empirical loss function (m-pelf) is the expectation of nm-
pelf over the distribution of data: lp(w,b) = Ex,y(lp(w,b|x,y)) =

Ex,y,e(lp(w,b|x,y, e))). Since p(x,y) is often unknown, either assumed parameter
distribution, or nonparametric density estimation can be used to approximate p(x,y).

Minimizes nm-pelf lp(w,b|x,y) is a regularized minimization of elf with an added penalty
term to mitigate overfitting (Sections 2.1 and 2.2). In the practical implementation of the
deep learning algorithm, since the number of epochs k is finite, the whiteout procedure,
eventually leads to minimization of pelf lp(w,b|x,y, e) rather than nm-pelf lp(w,b|x,y)

(requires k → ∞). In what follows, we establish the convergence of lp(w,b|x,y, e) to
lp(w,b|x,y) (Lemmas 2 and 3), the convergence of lp(w,b|x,y) to lp(w,b) (Lemma
Lemma 4), and eventually lp(w,b|x,y, e) to lp(w,b) (5). The proof of the lemmas are
provided in the Appendix C to Appendix E.

Lemma 2. Pointwise convergence of pelf to nm-pelf: There exists an upper bound
dimension-free Lipschtz constant B (B > 0) on ∂f

∂e
, that is independent of NN model

parameters (w,b), such that

Pr(|lp(w,b|x,y, e)− lp(w,b|x,y)| > t) ≤ 2 exp

(
−knt

2

2B

)
for any t > 0 (16)

Since B is independent of the values and dimension of (w,b), the upper bound given in
Lemma 2 is uniform with regard to (w,b), and thus guarantees that as k →∞, the differ-
ence between pelf lp(w,b|x,y, e) and nm-pelf lp(w,b|x,y) approaches 0 with probability
1. Note that a dimension-free Lipschtz constant B only exists for strictly log-concave dis-
tributions such as Gaussian distribution, hence the tail bound of in the pelf is much tighter

9

than that of shakeout where Bernoulli noise in injected, given that the variance of the noise
terms between the two are comparable.

Lemma 3. Almost sure convergence of pelf to nm-pelf: lp(w,b|x,y, e) converges
to lp(w,b|e) almost surely as k →∞.

|lp(w,b|x,y, e)− lp(x,y|x,y)| < δ as k →∞ for every δ > 0 and all (x,y) ∈ Rp+1

Lemma 4. Almost sure convergence of nm-pelf to m-pelf: lp(w,b|x,y) converges
to lp(w,b) uniformly as n→∞.

|lp(w,b)− lp(w,b)| < δ as n→∞ for every δ > 0 and all (w,b) ∈ RK

where K is the dimension of the NN model (dimension of (w,b)).

By the the triangle inequality, |lp(w,b|x,y, e)− lp(w,b)| ≤ |lp(w,b|x,y, e)− lp(w,b|x,y)|
+ |lp(w,b|x,y)− lp(w,b)|. With Lemma 3 and Lemma 4 established, we can easily obtain
the almost sure convergence of lp(w,b|x,y, e) to lp(w,b|x,y).

Lemma 5. Almost sure convergence of pelf to m-pelf: lp(w,b|x,y, e) converges to
lp(w,b) uniformly as k →∞ and n→∞,

lp(w,b|x,y, e)− lp(w,b)| < δ as k →∞, n→∞,
for every δ > 0 and all (x,y) ∈ Rp+1, (w,b) ∈ RK .

Estimates of (w,b) and thus predicted Y obtained from minimizing m-pelf lp(w,b|x,y, e)

will always be different from those obtained by minimizing elf l(w,b|x,y) regardless of n
and k, due to the regularization effect. Given this, the variance σ2 of the Gaussian distri-
bution in whiteout should kept small so that the estimates of (w,b) won’t deviate much
from an ideal local optimum. We present below a sufficient but not necessary condition
in Lemma 6, a bound on σ2, to achieve consistency between pelf lp(w,b|x,y, e) and ilf
l(w,b) as n→∞ and k →∞. The proof is provided in Appendix F.

Lemma 6. Suppose that K is a class-s kernel (s ≥ 1). Let g denote be the true density
of random variable x (of dimension d) whose weak partial derivatives Dαg are integrable
(|α| = s), and gn,σ is the kernel smoothed density estimate of x. Assume that for some
ε > 0,

∫
Rd

(1 + ||x||d+ε)K(x)2 <∞ and
∫
Rd
||x||d+εg(x) <∞. When s is even and

σ(n) = n−
1

d+2s

 d
√∫

Rd
K(x)2

∫
Rd

√
g(x)

2s
∫
Rd

∣∣∑
|α|≤s

1
α!
Dαg(x)

∫
Rd

xαK(x)
∣∣
−

2
d+2s

, (17)

then E

(∫
Rd
‖ gn,σ(x)− g(x) ‖

)
≤

(1 + δ(n))

(
σs
∫
Rd

∣∣∑
α

1

α!
Dαg(x)

∫
Rd

xα +K(x)
∣∣+(nσd)−

1
2

√∫
Rd
K(x)2

∫
Rd

√
g(x)

)
,

where δ(n)→ 0 as n→∞.

10

Theorem 3. If σ2 of the whiteout Gaussian noise satisfies Eqn (17), and Lemma5 holds,
then (w,b) estimated by minimizing lp((w,b|x,y, e) (pelf) are consistent with the esti-
mates from minimizing l(w,b) (ilf) as n→∞ and k →∞.

2.4 back-propagation with whiteout

We present in this section the algorithmic realization of whiteout in the context of the BP
procedure in deep NNs. Let p(l) and p(l+1) denote the number nodes in layer l and layer
l+1, respectively, where l = 1, . . . , L−1 and L is the total number of fully-connected layers.
Weight w(l+1)

ij connects the ith node in layer l and the jth node in layer l+ 1. The training
loss is D = 1

2

∑n
k=1(ŷk − yk)2, where ŷk is the predicted label via the learned NN and yk

is the observed label in case k; and the activation function between two layers is denoted
by f . The detailed steps in the BP algorithm with whiteout are illustrated with additive
gen noise eij ∼ N(0, σ2

|wij |γ + λ) in Table 1. The steps are similar with multiplicative noise,

except for the calculations of ul+1
j and ∂u

(l+1)
j

∂w
(l+1)
ij

, which are provided in the table footnote.

input: learning step: η; tuning parameters in whiteout Gaussian noise: (σ2, γ, λ)
1. feed forward (FF):
• sample e1j, . . . , epj from N(0, 1):

• calculate u(l+1)
j =b

(l+1)
i +

∑p(l)

i=1

(
x
(l)
i + eij

√
σ2

|w(l+1)
ij |γ

+ λ

)
w

(l+1)
ij ;x

(l+1)
j = f(u

(l+1)
j)

2. back propagation:

• ∂D

∂x
(l)
i

= ∂D

∂u
(l+1)
i

∂u
(l+1)
i

∂x
(l)
i

= ∂D

∂u
(l+1)
i

w
(l+1)
ij , where ∂D

∂u
(l+1)
j

= −2(yi − xLi)f ′
(
u
(l+1)
j

)
for

l = L− 1, and ∂D

∂u
(l+1)
j

= ∂D

∂xl+1
i

f ′
(
u
(l+1)
j

)
for l < L− 1

• weight update: w(l+1)
ij = w

(l+1)
ij + η ∂D

∂w
(l+1)
ij

, where ∂D

∂w
(l+1)
ij

= ∂D

∂u
(l+1)
i

∂u
(l+1)
i

∂w
(l+1)
ij

=

∂D

∂u
(l+1)
i

x(l)i + eij
(2− r)σ2

∣∣w(l+1)
ij

∣∣1−r + 2λ
∣∣w(l+1)

ij

∣∣
2
√
σ2
∣∣w(l+1)

ij

∣∣2−γ + λ
∣∣w(l+1)

ij

∣∣2


• bias update: b(l+1)
j = b

(l+1)
j + η ∂D

∂b
(l+1)
j

, where ∂D

∂b
(l+1)
j

= ∂D

∂u
(l+1)
j

∂u
(l+1)
j

∂b
(l+1)
j

= ∂D

∂u
(l+1)
j

output: final estimates of (w,b) after k epochs of FF/BP in all k cases
With multiplicative noise, all steps above are the same except for the calculations of u(l+1)

j and

∂u
(l+1)
j

∂w
(l+1)
ij

, that is, FF: u
(l+1)
j = b

(l+1)
j +

∑p(l)

i=1 x
(l)
i

(
1 + eij

√
σ2

|w(l+1)
ij |γ

+ λ

)
w

(l+1)
ij , and BP:

∂u
(l+1)
j

∂w
(l+1)
ij

=

x
(l)
j + x

(l)
i eij

(2− γ)σ2
∣∣w(l+1)
ij

∣∣1−γ + 2λ|w(l+1)
ij

∣∣
2
√
σ2
∣∣w(l+1)
ij

∣∣2−γ + λ
∣∣w(l+1)
ij

∣∣2
Table 1: Backpropagation with whiteout

As can be seen in Table 1, the BP algorithm with whiteout involves calculation of many
derivatives during training, which can be time consuming and prone to large rounding
errors. A computationally more efficient way, accompanied with improved accuracy, is to
calculate the regular BP derivatives and the noise related partial derivatives separately,

11

suggested by Proposition 1 (the proof is provided in Appendix G). In other words, we can
think of whiteout NI as superimposing a “noise NN” onto the “data NN”. During the BP
step in an epoch iteration, the two superimposed NNs receive the same values passed down
from the higher layers, and calculate the partial derivatives in their respective cases, which
are then combined only to lead to the same derivatives as those listed in Table 1.

Proposition 1. Let the left superscript below denote the two “superimposed” NNs: 1
is the the “data’ ’NN and 2 refers to the “noise” NN, then the derivatives involved in
the computation of u(l+1)

j and updating of weights and bias in whiteout-augmented BP
algorithm can be achieved by computation by part in the two “superimposed” NNs.

u
(l+1)
j = 1u

(l+1)
j + 2u

(l+1)
j

∂D

∂w
(l+1)
ij

=
∂D

∂u
(l+1)
j

∂u
(l+1)
j

∂1u
(l+1)
j

∂1u
(l+1)
j

∂1w
(l+1)
ij

∂1w
(l+1)
ij

∂w
(l+1)
ij

+
∂D

∂u
(l+1)
j

∂u
(l+1)
j

d2u
(l+1)
j

∂2u
(l+1)
j

∂2w
(l+1)
ij

∂2w
(l+1)
ij

∂w
(l+1)
ij

∂D

∂b
(l+1)
i

=
∂D

∂u
(l+1)
j

∂u
(l+1)
j

∂1u
(l+1)
j

d1u
(l+1)
j

∂1b
(l+1)
i

∂1b
(l+1)
i

∂b
(l+1)
i

+
∂D

∂u
(l+1)
j

∂u
(l+1)
j

∂2u
(l+1)
j

∂2u
(l+1)
j

∂2b
(l+1)
i

∂2b
(l+1)
i

∂b
(l+1)
i

∂D

∂x
(l)
j

=
∂D

∂u
(l+1)
j

∂u
(l+1)
j

∂1u
(l+1)
j

∂1u
(l+1)
j

∂1x
(l)
i

∂1x
(l)
i

dx
(l)
i

+
∂D

∂u
(l+1)
j

∂u
(l+1)
j

d2u
(l+1)
j

∂2u
(l+1)
j

∂2x
(l)
i

∂2x
(l)
i

∂x
(l)
i

.

3 Experiment

In this section, we compare whiteout with the regular BP, dropout and shakeout using
the hand written digits data MNIST. We employed the same NN structure in Kang et al.
(2016) (Table 2) to facilitate the comparisons across the different algorithms. Layer 1 and
layer 2 were convolutionart layers followed by ReLU nonlinear activation and max-pooling;
Layer 3 and layer 4 were fully-connected layers. Dropout, shakeout, and whiteout were
applied to hidden nodes in the fully connected layers (layers 3 and 4).

Layer 1 2 3 4
Type convolutional convolutional fully-conn. fully-conn.
Channels/Nodes 20 50 500 10
Filter Size 5× 5 5× 5 - -
Convolutional Stride 1 1 - -
Pooling Size 2× 2 2× 2 - -
Pooling Stride 2 2 - -
Activation Function ReLU ReLU ReLU Softmax

Table 2: Adopted NN model in the MNIST data (reproduced from Kang et al. (2016))

In whiteout, we applied the multiplicative gen noise with three tuning parameters (σ2, λ

and γ) with a 6-fold CV. The 6-fold CV procedure was repeated 10 times with different
random seeds. The classification errors on the testing data set were summarized over the 10
repetitions to obtain the mean and standard deviation of the error rate in each algorithm.
The results are given in Table 3. Whiteout had the best performance (lowest misclassifica-
tion rate) when the size of training data was relatively small with its efficient regularization

12

training size n regular BP dropout shakeout whiteout
500 6.70±0.24% 7.10±0.20% 4.84±0.27% 4.73±0.19%
1,000 4.76±0.13% 5.01±0.13% 3.33±0.14% 3.25±0.18%
3,000 2.50±0.11% 2.40±0.12% 2.00±0.16% 1.89±0.13%
8,000 1.78±0.10% 1.68±0.11% 1.47±0.10% 1.38±0.07%
20,000 1.34±0.05% 1.07±0.06% 1.25±0.08% 1.13±0.06%
50,000 0.90±0.06% 0.88±0.07% 0.97±0.13% 0.95±0.11%

Table 3: Misclassification rates (mean±SD) in regular BP, dropout, shakeout and whiteout in
training data of different training size

on over-fitting. The misclassification rate decreased by almost 50% in whiteout compared
to the regular dropout procedure, and also improved over the shakeout procedure though
not as dramatically. The improvement continued until when training size was 8,000. When
the training set was large (20,000 and 50,000), dropout procedure performed the best, fol-
lowed by whiteout and then shakeout; but the differences were small. Note that a constant
σ2 was employed in all scenarios of n. The difference might disappear if σ2 had been
specified as a function n (smaller σ2 with larger n).

The evolvement of the classification accuracy in the training data set during the iterations
of the regular BP, dropout, shakeout, and whiteout algorithms are depicted in Figure 1.
The error stabilized in all algorithm after a certain number of epochs, but to different error
rate level. Whiteout yielded the smallest error rate among all algorithms. The training
loss was bounded in all algorithms, serving as empirical evidence on the feasibility of
minimizing the pelf lp(w,b|x,y, e). Since the magnitude of noise injected in shakeout and
whiteout depended on the weights being updated in each iteration (adaptive), there was
more fluctuation around error rates and training loss compared to the regular BP (no NI)
and dropout (dropping nodes at a constant rate); whiteout nevertheless fluctuated much
less than shakeout because of the tighter bound (Lemma 2).

0 2000 4000 6000 8000 10000

0.
05

0.
06

0.
07

0.
08

0.
09

0.
10

Epochs

Te
st

 E
rr

or
 R

at
e

regular BP
dropout
shakeout
whiteout

0 2000 4000 6000 8000 10000

Epochs

Tr
ai

ni
ng

 L
os

s
(lo

g−
sc

al
ed

)

0
0.

04
0.

16
0.

36
0.

64
1

regular BP
dropout
shakeout
whiteout

Figure 1: Misclassification error and training loss of the learned NNs in the MNIST data

13

4 Conclusion

Whiteout is a flexible and efficient approach to regulate overfitting and improve general-
ization and prediction in deep NNs. Whiteout is associated with an optimization objective
function in the context of GLMs with a closed-form penalty term that includes lasso, ridge
regression, adaptive lasso, and elastic net as special cases, and can also incorporate group
structures among the features. Whiteout can also be viewed as robust learning of NN
models in the presence of small and insignificant perturbations in the input and hidden
nodes. Computationally, whiteout can be incorporated in the popular iterative BP algo-
rithm in deep learning, where whiteout noises are sampled from Gaussian distributions
with variance terms adaptive to the weights trained up to the latest epoch. Contrast to
shakeout where the derivatives of sign functions are approximated, our proposed algorithm
with whiteout does not involve such as approximation. In terms of performance, whiteout
has better prediction performance than dropout, when training data are relatively small in
size; compared to shakeout, the penalized objective function in whiteout is more stable and
has better convergence behaviors during training. We established the almost sure conver-
gence of noise-perturbed empirical loss function to the ideal loss function as the number of
epochs and the size of the training data approach infinity, and the consistency of estimated
parameters in a trained NN under mild assumptions. Future work include examination of
convergence rates of the noise-perturbed empirical loss function to the ideal loss function,
and applications of whiteout in more real-life data sets.

Appendix

A Proof of Lemma 1

n∑
i=1

Ee(lp(w|x̃i, yi, ei)) =
n∑
i=1

−(yiEe(x̃i)w − Ee(A(x̃iw))) =
n∑
i=1

−(yixiw − Ee(A(x̃iw)))

=
n∑
i=1

lp(w|x̃i, yi) +R(w), where R(w) ,
n∑
i=1

Ee(A(x̃iw))−A(xiw).

A second -order Taylor expansion of A(x̃iw) around xiw and taking expectation on the
approximation with regardless to the distribution of noise leads to

Ee(A(x̃iw)) ≈ A(xiw) + A′(xiw)Ee(x̃iw − xiw) +
1

2
A′′(xiw)Vare(x̃iw − xiw)

= A(xiw) +
1

2
A′′(xiw)Vare(x̃iw)

thus, R(w) ≈ 1

2

n∑
i=1

A′′(xiw)Ve(x̃iw)

14

B Proof of Theorem 2

l̃(w,b|x,y) ≈
n∑
i=1

(
(yi − ŷi)2 + Vare(Ψiei)

)
=

n∑
i=1

(
(yi − ŷi)2 + Ee(Ψiei)

2 − (Ee(Ψiei))
2)

=
n∑
i=1

Ee((yi − ŷi)2 − (Ψie)2) = Ee

(
n∑
i=1

((yi − ŷi)2 − (Ψie)2)

)

C Proof of Lemma 2

Proof of Lemma 2 employs concentration inequality of independent variables (Pollard,
1984). Let ε = (ε1, . . . , εn) be a vector of n independent standard Gaussian variables,
and f : Rn → R be L-Lipschitz continuous with respect to the Euclidean norm. Then
f(ε)− E(f(ε)) is sub-Gaussian with parameter at most L, and for any t ≥ 0

Pr(|f(ε)− E(f(ε))| ≥ t) ≤ 2 exp

(
−t2

2L2

)
.

The Gaussian noise injected through whiteout per case is e = (e
(1)
1 , . . . , e

(1)
m , e(2))t of dimen-

sion m+pm (p is the number of nodes in layer l and m is the number of nodes in layer l+1)
with mean 0 and covariance Σ = σ2diag

{∣∣w(1)
11

∣∣−γ, . . . , ∣∣w(1)
mp

∣∣−γ, ∣∣w(2)
1

∣∣−γ, . . . , ∣∣w(2)
m

∣∣−γ}. To
utilize concentration inequality, we re-write e = σΣ1/2ε, where ε is a standard Gaussian
vector containing pm + m independent elements. In other words, e is linear function
of ε (Since e appears inside f in the inner product etjwj, working with ε won’t change
Lipschitz continuity of the NN model f). f considered in the context of whiteout is pelf
lp(w,b|x,y, e), a composition of Lipschitz continuous activation functions, with the output
function uniformly bounded. To determine the Lipschitz constant L, it suffices to bound
weights w such as gradient ∂f

∂e
is bounded. In the case of gallr noise, weights are naturally

bounded due to the constraints imposed by the l1 and l1 regularization. We denote upper
bound of ∂f

∂e
as B, which is independent the dimension and values of (w,b), and thus

Pr(|lp(w,b|x,y, e)− lp(w,b|x,y)| > t) ≤ 2 exp(−knt2

2B
) per concentration inequality.

D Proof of Lemma 3

Since Ee(inf
w,b

lp(w,b|x,y, e)) ≤ inf
w,b

lp(w,b|x,y) and inf
w,b

lp(w,b|x,y, e) is a concave function

of the empirical measure defined by e, hence it is a Backward Super-Martingale, and thus
converges almost surely toward a random variable as k →∞. By the law of large numbers,
lp(w,b|x,y, e)→ lp(w,b|x,y).

15

E Proof of Lemma 4

|lp(w,b|x,y)− lp(w,b)| =
∣∣Ee

(
n−1(f(xi, e)− yi)2

)
− Ee

(
Ex,y(f(x, e)− y)2

) ∣∣
≤ Ee

∣∣n−1(f(xi, ei)− yi)2 − Ex,y(f(x, e)− y)2
∣∣ by Jensen’s Inequality

By the law of large numbers, n−1
∑n

i=1(f(xi, ei)−yi)
2 → Ex,y(f(x, e)−y)2 almost surely.

Taken together, lim
n→∞

|lp(w,b|x,y)− lp(w,b)|

≤ Ee

(
lim
n→∞

|n−1
∑n

i=1(f(xi, e)− yi)
2 − Ex,y(f(x, e)− y)2|

)
→ 0

F Proof of Lemma 6

Expectation of the loss function with regard to random variable (X, Y) can be seen as
averaging over infinitely many samples of (Xi, Yi) where i = 1, . . . ,∞. The average becomes
smoothed bootstrap with each noise injected as a kernel. In the feed forward process
between layers l and l+1, each iteration is thus a smoothed bootstrap sampling from layer
l. Holmström and Klemelä (1992) showed that in order for the difference in the predicted
outcomes from minimizing two loss functions asymptotically approaching 0, we only need
the difference between the true density g of (X, Y) and its kernel smoothed density gn,σ
asymptotically approaching 0. Under the mild assumption that the g(X, Y) belongs to
Sobolev Space, the weak partial derivatives Dαg, |α| ≤ s = 2 of which are integrable.

σ(n) = n−
1
p+4

 p
√∫

Rp
K(x)2∂x

∫
Rp
√
g

4
∫
Rp
|
∑
|α|=2

1
α!
Dαg

∫
Rp
xαK(x)∂x|

−
2
p+4

, (F.1)

where p is the dimension of p. By the basic properties of Gaussian kernels (s = 2), it is
trivial to show that all integrations in Eqn (F.1) exist and with an upper bound that is a
function of p.

G Proof of Proposition 1

As mentioned in Section 2.4, we can view whiteout NI as a “noise” NN superimposed over
the “data” NN. Let the left superscript below denote the two NNs (1 is the the data NN
and 2 refers to the noise NN), then

input: 1x
(l)
j = x

(l)
i ,

2x
(l)
j = e

(l)
ij

bias: 1b
(l+1)
j = b

(l+1)
j , 2b

(l+1)
j = 0

weight: 1w
(l+1)
ij = w

(l+1)
ij , 2w

(l+1)
ij = w

(l+1)
ij

√
σ2

|wj|γ
+ λ

16

The feed forward process calculates 1u
(l+1)
j and 2u

(l+1)
j

1u
(l+1)
j =

p(l)∑
i=1

1w
(l+1)
ij

1x
(l)
i + 1b

(l+1)
i ; 2u

(l+1)
j =

p(l)∑
j=1

2w
(l+1)
ij

2x
(l)
i + 2b

(l+1)
i

u
(l+1)
j = 1u

(l+1)
j + 2u

(l+1)
j =

p(l)∑
i=1

w
(l+1)
ij x

(l)
i + b

(l+1)
i +

p(l)∑
i=1

w
(l+1)
ij

√
σ2

|wj|γ
+ λ

=

p(l)∑
i=1

(
xj(l) + eij

√
σ2

|wij|γ
+ λ

)
w

(l+1)
ij + b

(l+1)
i

After the calculation of 1u
(l+1)
j and 2u

(l+1)
j , the BP process updates weights as in

∂D

∂w
(l+1)
ij

=
∂D

∂u
(l+1)
j

∂u
(l+1)
j

∂1u
(l+1)
j

∂1u
(l+1)
j

∂1w
(l+1)
ij

∂1w
(l+1)
ij

∂w
(l+1)
ij

+
∂D

∂u
(l+1)
j

∂u
(l+1)
j

d2u
(l+1)
j

∂2u
(l+1)
j

∂2w
(l+1)
ij

∂2w
(l+1)
ij

∂w
(l+1)
ij

=
∂D

∂u
(l+1)
j

·1 ·x(l)i · 1 +
∂D

∂u
(l+1)
j

·1·eij
(2− r)σ2|w(l+1)

ij |1−r + 2λ|w(l+1)
ij |

2
√
σ2|w(l+1)

ij |2−r + λ|w(l+1)
ij |2

=
∂D

∂u
(l+1)
j

(x
(l)
i + eij

(2− r)σ2|w(l+1)
ij |1−r + 2λ|w(l+1)

ij |

2
√
σ2|w(l+1)

ij |2−r + λ|w(l+1)
ij |2

)

bias as in

∂D

∂b
(l+1)
i

=
∂D

∂u
(l+1)
j

∂u
(l+1)
j

∂1u
(l+1)
j

d1u
(l+1)
j

∂1b
(l+1)
i

∂1b
(l+1)
i

∂b
(l+1)
i

+
∂D

∂u
(l+1)
j

∂u
(l+1)
j

∂2u
(l+1)
j

∂2u
(l+1)
j

∂2b
(l+1)
i

∂2b
(l+1)
i

∂b
(l+1)
i

=
∂D

∂u
(l+1)
j

· 1 · 1 · 1 +
∂D

∂u
(l+1)
j

· 1 · 1 · 0 =
∂D

∂u
(l+1)
j

and continues to the lower layer as in

∂D

∂x
(l)
i

=
∂D

∂u
(l+1)
j

∂u
(l+1)
j

∂1u
(l+1)
j

∂1u
(l+1)
j

∂1x
(l)
i

d1x
(l)
i

dx
(l)
i

+
∂D

∂u
(l+1)
j

∂u
(l+1)
j

∂2u
(l+1)
j

∂2u
(l+1)
j

∂2x
(l)
i

d2x
(l)
i

dx
(l)
i

=
∂D

∂u
(l+1)
j

· 1 · 1w(l+1)
ij · 1 +

∂D

∂u
(l+1)
j

· 1 · 2w(l+1)
ij · 0

=
∂D

∂u
(l+1)
j

· w(l+1)
ij

References
An, G. (1996). The Effects of Adding Noise During Backpropagation Training on a Gen-

eralization Performance. Neural Computation, 8:643–674.

Ba, J. and Frey, B. (2013). Adaptive dropout for training deep neural networks. Advances
in Neural Information Processing Systems, pages 1–9.

17

Bishop, C. M. (1995). Training with noise is equivalent to Tikhonov regularization. Neural
Computation, 7(1):108–116.

Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A., and Bengio, Y. (2013). Max-
out Networks. Proceedings of the 30th International Conference on Machine Learning
(ICML), 28:1319–1327.

Grandvalet, Y. (2000). Anisotropic noise injection for input variables relevance determi-
nation. IEEE Transactions on Neural Networks, 11(6):1201–1212.

Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with
neural networks. Science, 313:504–507.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov., R. R.
(2012). Improving neural networks by preventing co-adaptation of feature detectors.
arXiv:1207.0580.

Holmström, L. and Klemelä, J. (1992). Asymptotic bounds for the expected L1 error of a
multivariate kernel density estimator. Journal of Multivariate Analysis, 42(2):245–266.

Holmstrom, L. and Koistinen, P. (1992). Using additive noise in back-propagation training.
IEEE transactions on neural networks, 3(1):24–38.

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural
Networks, 4(2):251–257.

Ivakhnenko, A. (1971). Polynomial theory of complex systems. IEEE Transactions on
Systems, Man and Cybernetics, 4:364–378.

Kang, G., Li, J., and Tao, D. (2016). Shakeout: A New Regularized Deep Neural Network
Training Scheme. Proceedings of the 30th AAAI Conference on Artificial Intelligence
(AAAI-16), pages 1751–1757.

Matsuoka, K. (1992). Noise injection into inputs in back-propagation learning. IEEE
Tranactions on Systems, Man, and Cybernetics, 22(3):436–440.

Mcculloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics, 5:115.

Pollard, D. (1984). Convergence of stochastic processes. Springer-Verlag.

Seghouane, A. K., Moudden, Y., and Fleury, G. (2004). Regularizing the effect of input
noise injection in feedforward neural networks training. Neural Computing and Applica-
tions, 13(3):248–254.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research, 15:1929−1958.

Wager, S., Wang, S., and Liang, P. (2013). Dropout training as adaptive regularization.
Advances in Neural Information Processing Systems (NIPS), 26:351–359.

Wainwright, M. J. and Jordan, M. I. (2008). Graphical Models, Exponential Families, and
Variational Inference. Now Publishers Inc.

18

Wan, L., Zeiler, M., Zhang, S., LeCun, Y., and Fergus, R. (2013). Regularization of neural
networks using dropconnect. Icml, (1):109–111.

Wang, S. and Manning, C. D. (2013a). Fast dropout training. Proceedings of the 30th
International Conference on Machine Learning, pages 118–126.

Wang, S. I. and Manning, C. D. (2013b). Fast dropout training. Proceedings of the 30th
International Conference on Machine Learning, 28:118–126.

Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped
variables. Journal of the Royal Statistical Society: Series B, 68(1):49–67.

Zhuo, J., Zhu, J., and Zhang, B. (2015). Adaptive dropout rates for learning with cor-
rupted features. IJCAI International Joint Conference on Artificial Intelligence, 2015-
Janua(Ijcai):4126–4133.

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American
Statistical Association: Theory and Methods, 101(476):1418–1429.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net.
Journal of the Royal Statistical Society: Series B, 67(2):301–320.

19

	1 Introduction
	2 Whiteout
	2.1 Whiteout as a regularization method
	2.2 Whiteout as a robust learning method
	2.3 Consistency of the whiteout procedure
	2.4 back-propagation with whiteout

	3 Experiment
	4 Conclusion
	A Proof of Lemma 1
	B Proof of Theorem 2
	C Proof of Lemma 2
	D Proof of Lemma 3
	E Proof of Lemma 4
	F Proof of Lemma 6
	G Proof of Proposition 1

